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Abstract

In this report we conclude the study initiated in Part T and go on to consider optimal
feedback control (compensator) design for stability augmentation, following the mathematical
formulation developed in Part I. We assume co-located (rate) sensors and (force and moment)
actuators, and allowing for both sensor and actuator noise, formulate stabilization as a
stochastic regulutor problem. Specializing the general theory developed by the author, a
complete, “closed form™ solution, (believed to be new with this report) is obtained, taking
advantage of the fact that the inherent structural damping is light. In particular we are able to
solve in closed form the associated infinite-dimensional steady-state Riccati equations. The
SCOLFE model involves associated partial differential equations in a single space variable, but
the compensator design theory developed is far more general since it is given in the abstract
wave equation formulation. Our results thus hold for any multibody system so long as the

basic model is linear.






A MATHEMATICAL FORMULATION
OF THE SCOLE CONTROL PROBLEM, PART II:
OPTIMAL COMPENSATOR DESIGN

I. Introduction

In this report we conclude the study initiated in Part I [1] and go on to consider optimal
feedback control (compensator) design for stability augmentation, following the mathema-
tical formulation developed in Part 1. We assume co-located (rate) sensors and (force and
moment) actuators, and allowing for both sensor and actuator noise, formulate stabilization as a
stochastic regulator problem. Specializing the general theory developed in [2] we are able to
obtain a complete, “closed form” solution, (believed to be new with this report) taking advan-
tage of the fact that the inherent structural damping is light. In particular we are able to solve
in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE
model involves associated partial differential equations in a single space variable, but the
compensator design theory developed is far more general since it is given in the abstract wave
equation formulation.  Our results thus hold for any multibody system so long as the basic
model is linear.

The organization is as follows. To make the report self-contained, Section 2 reviews
the flexible-structure dynamic equations for a variation of the SCOLE model illustrating in
particular the generating of the abstract Hilbert space wave-equation formulation. The formu-
lation of the stubilization as a stochastic regulator problem in the abstract wave-equation setting
is given in Section 3. The optimal compensator transfer function is derived in Section 4 where
the steady-state Riccati equtions are also solved explicitly. The compensator is shown to
have a simple. euasily realized structure as a series of band-pass filters centered at

the closed-loop modal frequencies.



[

2. Review: Structure Equations

We shall derive our results using the abstract formulation developed in [1]. To illustrate
the generality of this formulation and incidentally also make this report self contained as much
as possible, we shall re-derive the abstract wave equation formulation for a close variation of
SCOLE where the controls are concentrated at the antenna end, and for simplicity, exclude
proof mass controllers. In addition, since we are concerned only with mast stabilization rather
than the antenna slewing problem we shall neglect the kinematic nonlinearity term as well.

We have then the basic equations for the mast displacements wo(-), ug() and u, (),

(see [1]):
0

pAi (6, 8) + Elul"(t, 5)
0 O<t; O<s<L 2.1

0

pAiy(t, ) + Elguy"(s. s)
plyiiy (1, 8) - Glyuy(ts) = 0
where the dots represent derivatives with respect to time ¢ and the primes with respect

to the space variable s, as in [1]. With the (“clamped”) boundary conditions at the shuttle

end (s = 0):
o (1, 0) = uy(6,0) = u, (1, 0) = 0
. 2.2)
ug(t.0) = wug(1,0) = 0
For the controls at the antenna end (s = L) we have:
Eljug"(t, L)y = myiiy(t, L) + F (0
(2.3)

Elyuy"(t. L) = mgig(t, L) + F (O
where F () and /() are applied forces. With Af(r) dencting the applied control moment

(3x1 vector):
El,u(r, L)
Elyug(t. L) | + Liog + My — 0 (2.4)
G/w u, (1, L)

where oy is the angular velocity defined by:



iy (4, L)
Wy = | iyt L) 2.5
iy (1, L)

and /4 denote the moment of inertia at the antenna end.
It is convenient at this point to make the transition to a more precise the problem formu-
lation by employing the vocabulary of “abstract” (or “function space™) analysis. Thus let T

denote the class of 3x 1 functions

g {8)
ug (s) | O<s<L

uy, (s)

such that w, (). ug (), ug (), 1,"();  tg(), ug(), ug(), ug'(); uw(-), u“;(‘), u“','('), all

belong to L,(0, 1), and satisfy the boundary conditions:

i
(@]

1y (0y = ug(0)

il
o

1y (0) = ug(0)

u, (0) = 0.

Introduce the inner product in % defined by: for any two elements £, ¢ in T, where

fo () 8o (5)
fG) = | |, g() = | gy ()
Fy () 2y (5)

L
(o8] = [ (fo® e + el + f(Dgy () ds + fo(L) ey (L)

0
v SoL) gLy  f (D& (L) v foL)gg (L) + filygay . (2.6)
The space complcted using this inner product will be dc%ignaited H. It is not difficult to see
that

H = L,0. L)} x R®.



It is convenient to use the notation for any element x in ¥:

u, ()
Uy ()
0y ()

X = by 27N

such that for .r‘in L
by = uy(L)
by = uy(L)
by = ug(L) (2.8)
by = ug(L)
bs = Uy, (L) .
Note that the boundary (at L where the controls are) is part of the state. Define now the

lincar operator A mapping T into H by:

Uy (°) Eljug ()
iy () Elyuy"(-)
iy () ~-GIW u\",’(-)
- | u@ | Ax - | EloudD) | (2.9)
ug (L) ~Elguy”'(L)
u, (L) Elyug' (L)
ug (L) Elyuy (L)
iy, (L) Gl uy(L)

Thus defined, A is self-adjoint and nonnegative definite with domain dense in Jt:
[Ax, o] =[x, Av] forx, yin & .

[Ax. x]

[\
o

tforxind .

Then as in [1] we can combine (2.1), (2.2), (2.3). (2.4) to yicld the abstract “wave equation”
in ¥:

M@ + Ax(0) + Bu(t) - 0 (2.10)



where w(s) represents the control:

F,@)
u) = | F @) .11
My(t)

and B is the linear (finite-dimensional) operator mapping R into ¥ by:

Bu = x; X =

\ (2.12)

8 O O o

and M is the “inertia™ operator:

pAu,
pAug
plyuy
Mx = y; y = myb, . (2.13)
mabz

b;
1| by

bs

Note that M is positive definite and has a bounded inverse. It is convenient to use the
notation:

pAuc>

pAu

y = o (2.14)

plyuy

M, b
where M, is thus a 5x5 matrix, nonsingular and positive definite. In particular, we have for

the adjoint B* mapping ¥ into R®:

B*y = b
B*Mx = M,b.

We shall call b the “boundary” vector or boundary “trace.”
Next we need to take into account the random noise input associated with the control. Let

N, (+) denote white Gaussian noise with (diagonal) spectral density matrix



dl

&)

where I denotes the 5x35 Identity matrix. Then we modify (2.10) to read
Mi(t) + Ax(¢) + Bu(®) + BN (1) = 0. (2.15)

We are assuming co-located rate sensors. Let v(¢) denote the sensor ouptut. Then we can

model it as:

v(t) = B*x(r) + Ny(o) (2.16)
where No(*) is white Gaussian with spectral density
dol .

The equations (2.15), (2.16) together yield the state space or abstract formulation that
we shall employ from now on.

In concluding this section, let us note the essential properties of A: (i) the resolvent of A
is compuct so that A has a pure point spectrum (ii) zero is in the resolvent set of A — we

consider only the “flexible body™ modes.

3. Formulation of Stochastic Regulator Problem

The stabilization (or stability augmentation) problem is to make (if possible) the
“boundary” displacements and displacement rates zero using controls which must be based on
avilable sensor data. Here the specific version of the problem we shall consider is to minimize

the steady state “boundary” rates: minimize in other words the time average

T
. | :
lim 7 Of ()P de 3.1)
where
b() = B*x(1),

b(r) = B*x(1) .
We shall also impose a soft constraint on the controls and thus consider the problem of

minimizing



N TS Al
lim [f J WP dr + Of (o) dr] (3.2)

for fixed A > 0. This can be seen to be a special case of the stochastic regulator problem in a
Hilbert space sctting treated in [2]. For this purpose we first rewrite (2.15) as a first order (in

time) equation. Define the state

x(1)

Y( = )
(@) i)

(3.3)

¥(*) is thus an element of the cross product space #x¥. On this space we define, following

(1), a new norm — the “energy” norm — defined on the cross product space:

T(VA) x H, T(VA) denoting domain of VA , (3.4)
[{Y};i_ = (VAy, VAy) + My, v,] (3.5)
where
Y - a1
Y2
and

¥, € domainof VA .

Here VA is the unique positive (self-adjoint and nonnegative definite) square root of A, and as
is well known the domain of VA includes that of A. The cross product space is actually
complete under this norm, because zero belongs to the reolvent set of A and hence also to the
resolvent set of VA. We shall denote the space by 7{,;. The requirement that the first
component should belong to the domain of VA will cause no problem for us in what follows.
Note that calculation of VA is possible using the Balakrishnan formula [6] but will involve the
boundary “trace” and can be tedious.

We can now proceed to the reformulation of (2.15) as a Cauchy problem in “state space”

form in ?{E (see [1]). Thus let

y 0 ! 3.6
I 7 L R (36)



Then with

x(2)
(o)

(2.15) can be written:
Y(1) = dY(r) + Bu(r) + BN,(7)

where N (¢) is white Gaussian noise with spectral density

d.!
It is eastly verified that
3"}/ = —'B*yz
where
v
e
X2
Also:
0 ~{
A* = -}
M A 0
Let
¢ = -B*

Then we can write (2.16) in the form
v(ir) = CY{r) + Ng(n).

Finally, the criterion (3.2) now becomes

. .
lim [} Oﬁm*r(r)n?dr . Of (o) s

In this formulation, we may now invoke Theorem 6.9.1 in [2], where we need to verify

the stabilizability requirement imposed therein. For this purpose we prove first:

(3.7)

3.8)

3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



Theorem 3.1. (4 ~ B) is Controllable.

Proof. We need the following Lemma.

Lemma. Let {¢, } denote the eigenvectors of A corresponding to the eigenvalues {A, };
Ay = A Moy, | (3.15)
Mo, ¢,] = 1.

Then the corresponding boundary trace

B*¢, # 0 for any k . (3.16)
Proof. Suppose
B*¢, = 0
for some k. Then
B*(M¢,) = 0.
Since
Ad, = A Mo,
;ave have:
B*(Ady) = 0.
Let
Ho
Ug
I
B*¢,
Then
Uy (L) = ug(l) = ug(Ll)y = u,"(L) = 0

ug(L) = wg(L) = ul(L) = ug”(L) = 0

uy (L) = uy(L) = 0
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and of course

1, (0) = uq;(O) =0
uy(0) = ug(0) = 0.

In addition:
Elyu;"(s) = Xku¢(s) , D<s<L
Elgug(s) = Aoug(s), O<s<L
Glyuy(s) = —Aguy(s), O<s<L.

Since the conditions include those of a beam clamped at both ends, it follows that Uy (4, ug(*)
must be identically zero. Similarly the boundary conditions
uy(L) = 0
along with
uy, (0) = wuy(L) = 0
are sufficient to make "w(') identically zero. Hence B*¢, cannot be zero, for any k.
Getting back now to the Theorem, let £(z), ¢ 2 0, denote the semigroup generated by A.

Then if (4 ~ B) is not controllable, there must be a nonzero element, say Z, in J{F such that

[Z, K)Bul; = 0, £20 (3.17)

for every u in R*. Because A has a compact resolvent, so does 4 and in fact (see also [4]):

o { ! ] 3.18
Vi = 0,0, V207 (3.18)
v . [ ' ] 3.19)
Ve = —iw,9, | (2l G
where
(l)k = \,xk—

are orthonormalized eigenvectors of 4. Let P, denote the projection operator corresponding

to the space spanned by y,, ¥,. Then
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i

Ky, = 9%y,

—ia)kl

MUY, = e L'/

KOP, = P MOP, .

Also, the {y,, ¥, } provide an orthonormal basis in #; and

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

MBu = X M)P,Bu .
k
We note that {y,. ¥, } is an orthonormal basis for P . Since
0
Bu = -1
-M Bu
it follows that
P, Bu = L u, b -
k \/f[ J (Ve = W)
where
b, = B*y,
Hence
, . _ -V2 (sin @, £)0
KoPBu = —=(u, b lle %y, - ey, = u bl _ k
V2 —~V2 w,(cos w,1)0,
Hence
[Z, KPP Bul. = 2 [u, b (MO, 2], sin @yt + [Mby, z2]0, cos 1)
where
2- |
2
It follows from (3.17) and (3.24) that
0 = [u, byllzy, MO ] = [u, byllz, Mo, ], for every k .

Since b, # O for any k, and u is arbitrary, it follows that

0 = [21,M¢k] == [221 M¢I¢]
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or that
Z =0
which is a contradiction.
Remark. We may note that while
B*, # 0 for any %,
we do have that
bl = 1B*¢,ll » 0 as k 9 eo (3.25)

In fact, from
, 2 2 2 — 1 2
Bully, = X (B4, il + 1(Bu, Bl l)
where the left side

M, u, u]

and the right side
= TIPBul =TIl bl
1 g 1
It follows in particular that

zj b < oo (3.26)

The result (3.25) has been explored numerically by Taylor and Naidu in [3].

Theorem 3.2. Let £, (#), t 2 0, denote the semigroup generated by

(4 - BB*) .
Then

I (DY lE. = 0 as t e (3.27)

for every Y. In other words the semigroup £, (¢) is strongly stable.
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Proof. Follows from the general result of this kind due to Benchimol (see [2]) as a

consequence of the fact that 4 has a compact reolvent, (4 ~ B) is controllable and 4 is

dissipative.

Theorem 3.2 is adequate to satisfy the stabilizability conditions requirement of

Theorem 6.9.1 in [2]. Applying that Theorem, we note that the optimal control that minimizes

(3.14) is given by

B+P_ Y(1)
uot) = ———
where
% BB*P, ) A -1
Y(£) = |4 - PffoB* - x Y(n) - Prdo Bv(r)
and

Y(0) can be chosen arbitrarily.

Here P, is the unique self-adjoint solution of algebraic Riccati equation

0 =[rY, AY][: + [dY, PCY]F + [B*Y,B*Y] - [B*P.Y, B*P.Y],

Ye I(d)

and similarly, P, is the unique self-adjoint solution of

0 = [PY, 5Y1, + [V, PY). + [d,B*Y, B¥Y] — [B*PY, d;' B*P, Y]

Ye I(4%).

The corresponding (minimal) value of (3.14) is

Tr. B*P, P P,B
do '

Tr. B3P;B +

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

We are fortunate that we can solve (3.30) and (3.31) exactly. In fact it is readily

verified that
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P, = VA1
and that
P = ddo 1.
Hence
up(t) = ~%9- (3.33)
and
P = (4 - YBB*)P() - \/% By(r) (3.34)
where
y = Yddo + \/LI . (3.35)
Correspondingly, (3.32) becomes:
Vddy + VA d, . (3.36)

We note that the semigroup £, (r), ¢ 2 0, generated by (4 — YBB*) is strongly stable. We have
thus obtained a complete closed-form solution of the stochastic regulator problem considered

herein.

4, Optimal Compensator Transfer Function

In this section we shall study the problem of determining the compensator transfer
function corresponding to the optimal control law (3.33). Strictly speaking (3.34) holds only in
the weak sense (see [2]), since v{r) contains white noise and is not differentiuble. Hence we

must replace (3.34) by
. : T .
Yoy = f L. (t - 0) [— '\/a ] Bv(o)do + L,(HY(0). 4.1
0

We may set 9(0) = 0. Then we have:

!

L Afds
wlt) = 5% Vi of BLy (¢ - 0)Bv(o) do “.2)
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defining the compensator input-output relation. Let
W) = fB*Ay(z)SB , t20 4.3)

denote the 5x5 matrix weighting function. Then we need to calculate the Laplace transform:

J B (0B ar, Re.5>0. (4.4)
0

The integral is absolutely convergent for Re. 5 > 0, since
IB*L, (0Bl - 0 as oo (4.5)

because the semigroup £, (') is strongly stable. The Laplace transform
[ eMsmrd < (W - @-v38%)7",  uso0 (4.6)
0

is usually denoted

R, 4 - yBB*)

and called the “resolvent” of the semigroup (see [2]). (4 — YBB*) has a pure point spectrum
— or eigenvalue spectrum. To calculate the eigenvalues we need to solve:

D

(d - YBBO¥ = AY; ¥ -
(DZ

yielding:

MO, + A®, + AYBB*®, = 0
(4.7)

¢, = AO,
Let {1, } denote the eigenvalues, k = 1, ..., in order of increasing [A,]. Let, correspondingly,
MM®, + AD, + AYBB*®, = 0 (4.8)
and let us normalize so that
MO, D] = 1. (4.9)

These @, should of course be distinguished from those in (3.15)). Let us note that the {®,}
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are not orthogonal. We shall call {4, } the closed-loop mode frequencies and {®, } the closed-
loop mode shapes. The closed-loop mode frequencies and mode shapes are complex valued.

Let

Gk = Re. ()\.k) ’ (3‘: = Im. ()'k) .

Then, taking inner products with respect to @, in (4.8) we have:

A+ [AD,, @] + AYIB*O2 = 0. (4.10)
Let
We of course assume that Yy is “small” in the sense that

Vbl << [AD,, @] . (4.11)

Then

b, |12
Gk = —'2_

['; .
@, - \/[Ad)k, D] - ﬂailﬁ = V[AD,, D] .

Consistent with the small y assumptions, we may approximate
2
[AD,, ©,] by (Ady, &1 =
b, = B*®, by by = B*¢,

using the open-loop (undamped) modes. In this way we get a first approximation to the

eigenvalues A, as

b 2
A, = (appr) - 7”2—"” + i, . (4.12)

We may also get a corresponding approximation to ¥, as a perturbation of ¢,. We omit the

details. The main point is that ¢, will be complex with an approximation of the form
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We can now state:

Lemma 4.1. (i) l;,( # 0 for any &

(i) 1Bl 20 as k = eo.

Proof. Let
D,
;"k (Dk

1
l}lk_: ’d—k‘

(these ¥, should be distinguished from y, in (3.18)) where

o, = V[AD, ®,1 + ]\ F.

Then ¥, is the eigenvector corresponding to A,. Since

by 12
O = -73

we shall use the strong stability property of the semigroup ‘67(') to prove that

6, # 0 for any & .
This is immediate from:
A ()Wl = £k 50 as oo,
Hence
o, < 0,

proving (i). To prove (ii) we may show that the {®,} are linearly ihdependent in # by
examining the function space part of (4.8). Here rather we shall use what we already have.
Thus since the {*¥',} corresponding to distinct eigenvalues are linearly independent, we know
that

B¥¥il - 0 as koo,
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Now
Al b, b,
B = Al 1B . (1611
0 \/ [AD, "+ @,
RV WL
and
[AD,, ®,] = &2 + o2 = D2,

Hence

Bl - 0.
Note in particular that the closed-loop modes @, approximate the clamped-clamped modes
as k 5 o, just as the open-loop mode shapes ¢, do.

Next let us note that A, is an eigenvalue if A, is, and has eigenvector —‘P—,‘. Since

¥
ku; 4 -yBBIYY, = —— , .
(0 YBB*)'Y, TR (4.14)
for any Y in HF. with the representation:
V= X (3% +b¥) (4.15)
we have:
. o b, —
Ru; 4 - yBB¥)Y = % ;\ Y, + ~— M (4.16)
i H- k H - A‘k

We want to specialize to

Y = Bu.

Also we assume that Bu is in the (closed) subspace spanned by the {¥, }, so that (4.15) holds.
In physical terms, this is equivalent to saying that we need not consider responses in which no
modes are excited. We can actually prove this by assuming that there is some {negligibly
small) strictly proportional damping so that the semigroup /() is analytic, implying then the
same for LY(-) — see [4].

Since complex-valued functions and vectors are involved, we now fix our notation for

the inner product: in C5: with asterisk denoting conjugate transpose:



[u, vl = u*v.
Since u is real:

Bu = Bu

bar denoting conjugate complex. Hence we can write
l o0 o0 — —
—EBM = 'i' [ZI [u, Ck]qlk + Zl [u, Ck]\yk} . (4.]7)

Taking inner products with respect to ‘¥, and Q‘-j respectively we have:

+a—1_[u. Ab;] %[z?[u, ¥ ¥, + z:f[u, EU[?,‘,\P]]E]

#

1, =% 1 & & 2w
+ -al—[u, ijj] 3 [2} lu, ¢, Ny, ‘l"j]h. + 2;. [u, TPy, ‘Pj]b_] .
These equations can be submerged into the form

where Z; are 25 matrices:

~and My; is 2x2 defined by

¥ ¥, [ ¥,
My =

o] —

R AR A

E

We can solve (4.18) in the form:

_ =, x rE ([ -
le Cj I = Zl l }\’kbk A’khk I[aT] rjk (4.20)

for appropriate 2x2 matrices, r;,, and hence finally we get

. ' I %0 [u9 Ck ]‘Pk [u, Ek ]WkJ
R, 4 - YBBBu = — = k
oA - YBB)Bu = -5 [z] T v ¥



and hence:
B*R(U, 4 - YBB*)B = Re. ———
32(“ Y ) € Zl (1k("1 - )"k)

where we note that from

2
1 50 2 = 1 00 =
“fBu”Z = 52] Iu, ck]\{!k + Z] [u, ckl\*’k = 521 ([u, A'kbk('ku] + [u, }\,khkq‘u]) ['a—]
E
we have that:
I oo ;\'k -~ % —}-\'-k :_*
521 &;bkck + a;bk"k = Isxs - (4.22)

Hence finally we obtain that the transfer function (Laplace transform) of the compensator has

the form

d, = Aybyct Kby T
] 1[ Pk Ch kkk]_ 4.23)

W Ve 2SR T oy
From (4.23) we can readily infer the structure of the compensator; we have a series of band
pass filters centered at the closed-loop mode frequencies @, , the Q-factor being determined by
the damping |o,1. The filter amplitudes decrease to zero as the mode number increases, by
virtue of (4.22). In the limiting case as |G,| - 0, the compensator consists of line-filters
at the open-loop mode frequences (®,/2m).

As a first approximation to the solution of (4.18), we may take:

2\, b, ,
¢, = —L (4.24y

/ .
al

yielding for the compensator transter function:
R ~ = :*
1 ‘_{\_ 1 “[ byby + biby
VL Yo 25 - ) T (u - Ry)

(4.25)

and a still further approximation by taking

~

bk = bk



yielding

(1 - 37 16,19, b

= 4.26
m-2A)n - A) @20

! \/Z =

= Va %

Let us note that in (4.26) we have an approximation for the compensator transfer function
(Laplace transform) which is quite general — independent of the particular flexible sysrem'
configuration. Only the traces of the open-loop mode shapes on the control sensor boundary
loca;ions are requ}‘rea — as well of course as the mode frequencies. In particular we note that
numerical calculations of {b,} for the SCOLE flight article have been reported by S. Joshi [5].
We can readily see from (4.23) that the feedback amplitude is inversely proportional to VA :
the smaller the A the larger the control effort, as we expect. Also it increases with the actuator
noise spectral density and decreases as the sensor noise increases, again as we should expect.

But the point is that the precise dependence has been determined in (4.23).
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